FRACTIONAL UTILIZATION 3200M Devlyn Lovell dlovell@antonian.org

2020 32nd NMTCCCA Clinic

 Embassy SuitesAlbuquerque, New Mexico

TABLE OF CONTENTS

- Ten characteristics of Philosopher Coaches - Frank Dick
- Communicate with Stakeholders - Janssen's
- Build a Championship Culture
- Develop Expectations
- Create Scouting Report
- Develop Science Based Training Plan
- Determine Mileage Goals
- Implement Fractional Utilization

TEN CHARACTERISTICS OF PHILOSOPHER COACHES - FRANK DICK

Committed to individual integrity,
values and personal growth
2.

Profound thinkers who see themselves as educators, not just coaches
3.

Well educated (formally and informally) in liberal arts tradition.
4.

Long run commitment to their athletes and their institution
5.

Willing to experiment with new ideas
6.

Value the coach player relationship, winning aside
7.

Understand and appreciate human nature
8.

Love their sport and work
9.

Honest and strong in character
10.

Human and therefore imperfect

COMMUNICATE WITH STAKEHOLDERS

ANTONIAN

NEEKLY INFORMATION

 Mar

Tantis imang?
 Movent

 13 F

Tentesimurs,

 4ar - -

 Nous sumpl|

 Satpo.inay 12

 pusinity pax.

 trbe mektwo men

 -

 moatherm

```
Somblen
```



``` \(\substack{n \rightarrow \infty \\ n=1}\)
```

ANTONIAN
PACKING LIST

	nexereen
	- manax 5ax
	-
	once
	-_men
Comincostes	
-_WeTemManktron	turatiotua
	- wimer
	suenem
-*	-_manimentian
name	authoter
- ${ }^{\text {T00* }}$	4-204-W+at
-swene	
am	Sumbry Ooses
rues.	wirm
	NoulM IF ereh

A.
antonian

riaing, Oftateen 11
Exem-razMeed

FORECAST
Salurday, Orkaber 12 $55^{\circ} 63$ Wha N 17 ren,

Mant Schedule:
s:se an-varayeos, can

 10 sum

FLUIDS - FLUIDS - FLUDSS- FLUIDS FLUIDS - FLUIDS - FLUIDS FLUIDS FLUIDS - FLUIDS - FLUIDS FLUIDS FLUIDS - FLUIDS - FLUIDS- FLUIDS

CROSS-COUNTRY ITINERARY

Itwerte imn manditise Tarbulth Tirt Tased cancecion

BUILD A CHAMPIONSHIP CULTURE JANSSEN'S

1. A clear vision -- short and long-term goals that guide why you coach,
2. Aligned coaching styles -- a guide for how you coach and mentor,
3. Core values -- to guide your decision-making, your words, and your actions,
4. Intent -- a clearly communicated purpose for everything you do,
5. Expectations -- standards for on and off-field behaviors, and
6. Accountability -- a means of responsibility and ownership for all behaviors.

DEVELOP EXPECTATIONS - MISSION STATEMENT/KEYS TO SUCCESS

An Intorscholastic Atrictik Program AC A Co Curricular Activty is An integral Part Of The

 Upon To Work Togetice ha True Splt Oot Sportmanship To Axgist in Creation An Emoltonment in Wilich Thoee Cathoic Valuss Can Be Rowezood, Testod, And Proven

- -

 wil Mature Ptpsacily, Emotionsly, Socialy, And Soantualy. They Wil Learm To Tas

Through Participstion in Athistiks, A Student Athikts Loams That God is active in Al Thing And That licividulal And uturgicil Proper Will Brigg The sh-dern Closer To Goat The

 preparatory fien school commurity what Sipk To Fnenurge, Inctil sed fother Such

 effort is the key to success
 like, and what ampoctit will have when you get t, and keep the vision trant and certer.
3. Integrity as the saping gocs, a man is only as nood as his word. Trust is tu-dimertal in reatiorehips, and cur relztonstips are cresn a
 reach thair utimate vision ot suctess.
 comfistence to be yuur best.

DEVELOP EXPECTATIONS

STUDENT EXPECTATIONS:

- Runners need to be ready for practice at 6:10 a.m. at the track with their running notebooks.
- Runners need to be dressed in appropriate running attire, with good running shoes and a watch.
- Runners are expected to stay at practice and meets for their duration.
- Participating at meets is mandatory, if assigned.
- Runners who are injured must dress out, meet at the track at posted time, receive treatment from trainer, and ice when needed.
- Runners should stay off their cell phones during practice.
- Runners are to be enrolled in the Band Application and check it regularly.
- Runners are to know our season schedule and communicate with their coaches.

DEVELOP EXPECTATIONS

ANTONIAN CROSS COUNTRY RUNNING LOG
"It's hard to beat a person who never gives up." Babe Ruth

Name
Week of

Date	$\begin{gathered} \text { Day } \\ \text { A.M. or P.M. } \end{gathered}$	Type of Run	Calculated pace	Actual pace	Total Distance of Run	Total Time	Total Miles For Day	Goal met?

"Meeting the demands of excellence is the priority!"
Total Miles this week
By a persistent effort of will it is possible to change the whole body. The athlete must always keep in mind this concept of change and progression. He must never accept his limitations as being permanent, because they are not. - Zatopek

DEVELOP EXPECTATIONS

CREATE SCOUTING REPORT

STATE MEET DEMANDS-Individual

SA Girls			
Name		School	Time
1	Leah Futey	Cleveland	$18: 26.4$
2	Jasmine Turtle-M	Eldorado	$18: 45.6$
3	Emily Schoellkopf	Albuquerque	$19: 07.0$
4	Brynn Esplin	La Cueva	$19: 15.9$
5	Lila Nezar	Volcano Vista	$19: 19.1$
6	Laurynn Sisneros	Eldorado	$19: 23.8$
7	Isabella Schrader	Volcano Vista	$19: 26.7$
8	Marissa Gallegos	Atrisco Heritage	$19: 35.7$
9	Isa Gonzales	Cleveland	$19: 39.1$
10	Kamalani Anitielu	Farmington	$19: 40.6$

4A Boys			
Name			School
1	Julian Garcia	Academy	Time
2	Justin Hickey	Academy	$16: 04.7$
3	Rafael Sanchez	Los Alamos	$16: 09.0$
4	Angel Anchondo	Santa Teresa	$16: 19.3$
5	Wakei Hettinga	Los Alamos	$16: 25.3$
6	Rendon Kuydendall	Hope Christian	$16: 26.0$
7	Steven Strevell	Los Alamos	$16: 27.0$
8	Tayan Benson	Miyamura	$16: 27.5$
9	Keith Bridge	Los Alamos	$16: 33.2$
10	Riley Watson	Miyamura	$16: 38.5$

Na18			
Name	School	Time	
1	Jasmine Turtle-M	Eldorado	$18: 22.4$
$\mathbf{2}$	Leah Futey	Cleveland	$18: 47.5$
4	Reilly McClanahan	Eldorado	$19: 08.3$
5	Ilisa Marez-Fishb	Albuquerque	$19: 19.4$
6	Brivia Salter	Sandia	$19: 25.6$
7	Mari Gonzales	La Cueva	$19: 25.8$
8	Reina Paredes	Rioveland	$19: 26.5$
9	Isa Gonzales	Cleveland	$19: 28.2$
10	Lila Nezar	Volcano Vista	$19: 34.1$

2018			
Name			School
1	Kashon Harrison	Kirtland Central	$15: 27.3$
2	Rafael Sanchez	Los Alamos	$16: 06.5$
3	Duncan Fuehne	Los Alamos	$16: 07.9$
4	Ty McCray	Miyamura	$16: 10.6$
5	Steven Strevell	Los Alamos	$16: 23.7$
6	Justin Hickey	Academy	$16: 36.4$
7	Oliver Pilon	Academy	$16: 41.8$
8	John Hall	Pojoaque Valley	$16: 41.8$
9	Skyler Forman	Academy	$16: 45.1$
10	Eric Scharton	Hope Christian	$16: 53.1$

CREATE SCOUTING REPORT

2016-2019 Top 10 Average by Classification

Develop Science Based Training Plan

Energy Source Comparisons for Various Events (from Gastin, 2011)

"Classic" Model

Energy Source	200	400	800	1500	5000	10000	Mar
Aerobic (\%)		18.5	35.0	52.5	80.0	90.0	97.5
Anaerobic (\%)		81.5	65.0	47.5	20.0	10.0	2.5

"Current" Model

Energy Source	200	400	800	1500	5000	10000	Mar
Aerobic (\%)	29.0	43.5	60.5	77.0	94.0	97.0	99.0
Anaerobic (\%)	71.0	56.5	39.5	23.0	6.0	3.0	1.0

The "current" model was determined using the latest methodology in oxygen kinetics, and with a much more elite subject population than the "classic" model.

BY THE NUMBERS

of energy need is developed in runs of 70-100\% of $\mathrm{VO}_{2} \max$
13%
is made up of runs $(100 \%+)$ or faster.

DEVELOP SCIENCE BASED TRAINING PLAN

Multi-Paced Training Plan

- Within the 13-14 day cycle we will hit different training paces. Paces are fluid differ depending on the time of year.
- Helps reduce the monotony of training.
- Allows for more recovery days if needed.
- Works well with racing schedules.
- Can hit the all of the major training parameters with in the cycle fairly easily.
- Speed and Endurance can be done each within each cycle if needed.

FRACTIONAL UTILIZATION PERCENTAGES

Event

- 400 m
- 800 m
- 1600m
- 3200 m
- 5000 m
- 10,000m

Percentage of VO_{2}

- 138-140\%
- 120-136\%
- 110-112\%
- 100-102\%
- 97-100\%
- $92-93 \%$

DEVELOP SCIENCE BASED TRAINING PLAN

Mesocycle

- General Prep (4 weeks)

Workout Type
Aerobic Efficiency
Lactate Threshold VVO_{2}

- Specific Prep (4 weeks)

Lactate Threshold VVO_{2}
Glycolytic

- Pre-Comp (4-6 weeks)
VVO_{2}
Lactate Threshold
Glycolytic
- Comp (3-4 weeks)
VVO_{2}
Glycolytic
Recovery

DEVELOP SCIENCE BASED TRAINING PLAN

- Lactate Threshold
- Aerobic Conditioning
- Power (Hills)
-Long Runs
- VO_{2} Max
- Glycolytic (Special I, II)
- Alactic

DEVELOP SCIENCE BASED TRAINING PLAN

- LONGER TEMPO

- 40' @ 80\%, 5-6 MILES
- MEDIUM TEMPO
- 30' @ 85\%, 4-5 MILES
- SHORTER TEMPO
- 25' @ 90\%, 3-4 MILES
- INTERVALS
- 8' @ 85\% Rest: 1' jog + 8' @ 85\% Rest: 1' jog + 8' @ 85\% Rest: 1' jog
- 5 X 1600M @ 87\% Rest: 1' jog
- $2(3 \times 1000 \mathrm{~m}) @ 88 \%$ Rest: $45^{\prime \prime}$ reps/2' sets

DEVELOP SCIENCE BASED TRAINING PLAN

- INTERVALS

- 12×400 @ 97\% Rest: 200 JOG
- 6 X 800M @ 97\% Rest: 200 JOG
- $5 \times 1000 \mathrm{M}$ @ 97\% Rest: 400 JOG
- $3 \times 1600 \mathrm{~m}$ @ 97\% Rest: 400 JOG
- COMBO/BLEND INTERVALS
- $3 \times 1000 \mathrm{~m}$ @ 90% Rest: 1 ' $+3 \times 800$ @ 97% Rest: $1: 1$
- 1600@ 92\% + 600@ 100\% + 1200@ 92\% + 400@ 110\% + 800@ 97\% Rest: 34'

DEVELOP SCIENCE BASED TRAINING PLAN

- INTERVALS

- 12×400 @ 100\% Rest: 1:1
- $6 \times 800 \mathrm{M} @ 100 \%$ Rest: 1:1
- $5 \times 1000 \mathrm{M}$ @ 100\% Rest: 1:1
- $3 \times 1600 \mathrm{~m}$ @ 102% Rest: 1:1
- CUT-DOWN INTERVALS
- 1600@ 97\%, 1200@ 100\%, 1000@ 100\%, 800@ 102\%, 400@ 110\% Rest: 1:1
"The greatest gains in maximal aerobic capacity occur when exercise intensity is at levels requiring 90-100\% of maximum capacity/VO2." -Vigil

DEVELOP SCIENCE BASED TRAINING PLAN

- INTERVALS

- $4(4 \times 200)$ @ 110% Rest: 100 jog reps/400 sets
- $4(2 \times 300)$ @ 110% Rest: 100 jog reps/400 sets
- 3(4 x 400) @ 110\% Rest: 100 jog reps/400 sets
- 6×400 @ 110\% 1:1
- 4×600 @ 110\% 1:2
- 3×800 @ 110\% 1:2
- 2(300-400-600) @ 110\% Rest: 1:2 jog reps/600 sets

DEVELOP SCIENCE BASED TRAINING PLAN

- SPECIAL ENDURANCE II INTERVALS

- 8×150 @ 120% Rest: 250 jog
- $2(4 \times 200)$ @ 120% Rest: 100 jog reps/400 sets
- 5×300 @ 120% Rest: 3^{\prime}
- 3×400 @ 120% Rest: 4^{\prime}
- SPECIAL ENDUARNCE I INTERVALS
- 4×200 @ BEST EFFORT Rest: 4^{\prime}
- 3×300 @ BEST EFFORT Rest: 6 '
- 2×400 @ BEST EFFORT Rest: 8^{\prime}

DEVELOP SCIENCE BASED TRAINING PLAN

-Long Run

- 10 miles
- 20-25\% weekly mileage
- $50 \times .20=10$
- $65 \% \mathrm{VO}_{2} \mathrm{Max}=8: 27$ (11:00/3200)
- Other example of Long Run
- Progression Long Run
- $1 / 4$ easy, $1 / 4$ slightly slower than Tempo, $1 / 4$ at Tempo, last $1 / 4$ easy.
- Very demanding and should be done only every other cycle.

DEVELOP SCIENCE BASED TRAINING PLAN

- Power

- $4 \times 800 \mathrm{M}$ Hills (continuous)
- Pace can be 10k pace (based on slope)
- Shoot for same time for each bout of work
- Rest: 88% recovery job back down the hill
- Other example of Hill workouts
- 6 mile continuous run over hills
- Effort should be timed
- Pace @ 75\%

DEVELOP SCIENCE BASED TRAINING PLAN

- $8-10 \times 30-40 \mathrm{~m}$ Fly's with 20 m run in.
- Rest: 3-4' between bouts of work.
- All speed work should be done at the beginning of practice.
- Good time to work on the mental piece with the kiddo's.
- Example workout: $8 \times 30 \mathrm{~m}$ fly's with 4' rest.
- 24 hour recovery.

DEVELOP SCIENCE BASED TRAINING

General Preparation Period (4 weeks)

- Training Emphasis: Aerobic Efficiency, Lactate Threshold, and vVO_{2}
- Mon- Long Run
- Tuesday - Tempo (Short) + Strides
- Wednesday - Aerobic Efficiency Run
- Thursday - 6 X 800 M @ 97% Rest: 300 JOG
- Friday - Aerobic Efficiency Run
- Saturday - Time Trial (1 Mile)
- Sunday - Aerobic Efficiency Run
- Monday - Tempo (Long) + Strides
- Tuesday - Aerobic Efficiency Run
- Wednesday - $6 \times 30 \mathrm{~m}$ Flys
- Thursday - Aerobic Efficiency Run
- Friday - Hills
- Saturday - Long Run
- Sunday - Aerobic Efficiency Run

DEVELOP SCIENCE BASED TRAINING

Specific Preparation Period (4 weeks)

- Training Emphasis: Lactate Threshold, vVO, and Glycolytic
- Mon- Long Run
- Tuesday - Tempo (Short) + Strides
- Wednesday - Aerobic Efficiency Run
- Thursday - $5 \times 1000 \mathrm{M}$ @ 100% Rest: 1:1
- Friday-Aerobic Efficiency Run
- Saturday - Time Trial (2 Mile)
- Sunday - Aerobic Efficiency Run
- Monday - Tempo Run (Long)
- Tuesday - $6 \times 30 \mathrm{~m}$ Flys
- Wednesday - Aerobic Efficiency Run
- Thursday $-4(2 \times 300) @ 110 \%$ Rest: 100 jog reps/400 sets
- Friday-Aerobic Efficiency Run
- Saturday - Hills
- Sunday - Aerobic Efficiency Workout

DEVELOP SCIENCE BASED TRAINING

Pre-Competition Period (4 weeks)

- Training Emphasis: vVO_{2}, Lactate Threshold, Glycolytic
- Mon $-3 \times 1600 \mathrm{~m}$ @ 102% Rest: 1:1
- Tuesday - Aerobic Efficiency Run
- Wednesday - 30m Flys
- Thursday - Aerobic Efficiency Run
- Friday - Tempo (Short) + Strides
- Saturday $-3(4 \times 400) @ 110 \%$ Rest: 100 jog reps/ 400 sets
- Sunday - Aerobic Efficiency Run
- Monday - 2(4×200) @ 120% Rest: 100 jog reps/400 sets
- Tuesday - Aerobic Efficiency Run
- Wednesday -Thursday - Tempo (Long)
- Thursday - Aerobic Efficiency Run
- Friday-Recovery Run
- Saturday - Race
- Sunday - Long Run

DEVELOP SCIENCE BASED TRAINING

Competition Period (4 weeks)

- Training Emphasis: vVO_{2}, Glycolytic, Recovery
- Mon - Aerobic Efficiency Run
- Tuesday - $3 \times 2000 \mathrm{~m} @ 90 \%$ Rest: 2'
- Wednesday - Aerobic Efficiency Run
- Thursday - Aerobic Efficiency Run
- Friday- 5×300 @ 120% Rest: 3^{\prime}
- Saturday - Long Run
- Sunday - Aerobic Efficiency Run
- Monday - 3×800 @ 102% Rest: 1:1
- Tuesday - Aerobic Efficiency Run
- Wednesday - 4×200 @ BEST EFFORT Rest: 4^{\prime}
- Thursday - Aerobic Efficiency Run
- Friday-Easy Run
- Saturday - Race
- Sunday - Long Run

FIND TIME FOR YOUR GREATEST SUPPORTERS

REFERENCES

- Newton, Durkin. Running to the Top of the Mountain. JJ Winning Edge Press. 1988.
- Simmons, Freeman. TAKE the LEAD. Simmons and Freeman. 2006.
- Daniels. Daniels' RUNNING Formula. Human Kinetics. 2005.
- Christensen. Preparation of the Elite Middle Distance Runner. 2011.
- Schmidt, Al (2008) Combined Zone and Critical Zone Training Regimes. Elitetrack.com
- Vigil. Road to the Top. Creative Designs. 1995.
- Rubio, Joe (2003) Fundamental Training Principles for the Competitive 1500m runner.
- Martin, Coe. Better Training for Distance Runners. Human Kinetics. 1997.
- Karp. 101 Developmental Concepts \&Workouts for Cross Country Runners.
- Magness. The Science of Running. Origin Press. 2014

